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We consider the dimer-monomer problem for the rectangular lattice. By mapping the problem into one of
close-packed dimers on an extended lattice, we rederive the Tzeng-Wu solution for a single monomer on the
boundary by evaluating a Pfaffian. We also clarify the mathematical content of the Tzeng-Wu solution by
identifying it as the product of the nonzero eigenvalues of the Kasteleyn matrix.
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I. INTRODUCTION

An outstanding unsolved problem in lattice statistics is the
dimer-monomer problem. While it is known �1� that the
dimer-monomer system does not exhibit a phase transition,
there have been only limited closed-form results. The case of
close-packed dimers on planar lattices has been solved by
Kasteleyn �2� and by Temperley and Fisher �3,4�, and the
solution has been extended to nonorientable surfaces �5,6�.
But the general dimer-monomer problem has proven to be
intractable �7�.

In 1974 Temperley �8� pointed out a bijection between
configurations of a single monomer on the boundary of a
planar lattice and spanning trees on a related lattice. The
bijection was used in �8� to explain why enumerations of
close-packed dimers and spanning trees on square lattices
yield the same Catalan constant. More recently Tzeng and
Wu �9� made further use of the Temperley bijection to obtain
the closed-form generating function for a single monomer on
the boundary. The derivation is, however, indirect since it
makes use of the Temperley bijection which obscures the
underlining mathematics of the closed-form solution.

Motivated by the Tzeng-Wu result, there has been re-
newed interest in the general dimer-monomer problem. In a
series of papers Kong �10–12� has studied numerical enu-
merations of such configurations on m�n rectangular lat-
tices for varying m ,n, and extracted finite-size correction
terms for the single-monomer �10� and general monomer-
dimer �11,12� problems. Of particular interest is the finding
�10� that in the case of a single monomer the enumeration
exhibits a regular pattern similar to that found in the Kaste-
leyn solution of close-packed dimers. This suggests that the
general single-monomer problem might be soluble.

As a first step toward finding that solution it is necessary
to have an alternate and direct derivation of the Tzeng-Wu
solution without recourse to the Temperley bijection. Here
we present such a derivation. Our approach points the way to
a possible extension toward the general single-monomer
problem. It also shows that, apart from an overall constant,
the Tzeng-Wu solution is given by the square root of the
product of the nonzero eigenvalues of the Kasteleyn matrix,
and thus clarifies its underlining mathematics.

II. THE SINGLE-MONOMER PROBLEM

Consider a rectangular lattice L consisting of an array of
M rows and N columns, where both M and N are odd. The

lattice consists of two sublattices A and B. Since the total
number of sites MN is odd, the four corner sites belong to
the same sublattice, say, A and there is one more A than B
sites. The lattice can therefore be completely covered by
dimers if one A site is left open. The open A site can be
regarded as a monomer.

Assign non-negative weights x and y, respectively, to
horizontal and vertical dimers. When the monomer is on the
boundary, Tzeng and Wu �9� obtained the following closed-
form expression for the generating function:

G�x,y� = x�M−1�/2y�N−1�/2

� �
m=1

�M−1�/2

�
n=1

�N−1�/2 �4x2 cos2 m�

M + 1
+ 4y2 cos2 n�

N + 1
� .

�1�

This result is independent of the location of the monomer
provided that it is an A site on the boundary.

We rederive the result �1� using a formulation that is ap-
plicable to any dimer-monomer problem. We first expand L
into an extended lattice L� constructed by connecting each
site occupied by a monomer to a new added site, and then
consider close-packed dimers on L�. Since the newly added
sites are all of degree 1, all edges originating from the new
sites must be covered by dimers. Consequently, the dimer-
monomer problem on L �with fixed monomer sites� is
mapped to a close-packed dimer problem on L�, which can
be treated by standard means.

We use the Kasteleyn method �2� to treat the latter prob-
lem. Returning to the single-monomer problem let the
boundary monomer be at site s0= �1,n� as demonstrated in
Fig. 1�a�. The site s0 is connected to a new site s� by an edge
with weight 1 as shown in Fig. 1�b�. To enumerate close-
packed dimers on L� using the Kasteleyn approach, we need
to orient, and associate phase factors with, edges so that all
terms in the resulting Pfaffian yield the same sign.

A convenient choice of orientation and assignment of
phase factors is the one suggested by Wu �13�. While Wu
considered the case of MN even, the consideration can be
extended to the present case. Orient all horizontal �vertical�
edges in the same direction and the new edge from s� to s0,
and introduce a phase factor i to all horizontal edges as
shown in Fig. 1�b�. Then all terms in the Pfaffian assume the
same sign. To prove this assertion it suffices to show that a
typical term in the Pfaffian associated with a dimer configu-
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ration C has the same sign as the term associated with a
reference configuration C0. For C0 we choose the configura-
tion shown in Fig. 1�c�, in which horizontal dimers are
placed in the first row with vertical dimers covering the rest
of the lattice. Then C and C0 assume the same sign.

The simplest way to verify the last statement is to start
from a configuration in which every heavy edge in C0 shown
in Fig. 1�c� is occupied by two dimers, and view each of the
doubly occupied dimers as a polygon of two edges. Then the
“transposition polygon” �cf. �2�� formed by superimposing
any C and C0 can always be generated by deforming some of
the doubly occupied edges into bigger polygons, a process
that does not alter the overall sign. It follows that C and C0
have the same sign for any C. This completes the proof.

Here we have implicitly made use of the fact that the
monomer is on the boundary. If the monomer resides in the
interior of L, then there exist transposition polygons encir-
cling the monomer site which may not necessarily carry the
correct sign. The Pfaffian, while it can still be evaluated,
does not yield the dimer-monomer generating function. We
shall consider this general single-monomer problem subse-
quently �14�.

With the edge orientation and phase factors in place, the
dimer generating function G is obtained by evaluating the
Pfaffian

G�x,y� = Pf�A�� = �Det A� �2�

where A� is the antisymmetric Kasteleyn matrix of dimen-
sion �MN+1�� �MN+1�. Explicitly, it reads

A� =	
0 0 ¯ 0 1 0 ¯ 0

0

]

0

− 1 A

0

]

0


 . �3�

Here, A is the Kasteleyn matrix of dimension MN for L
given by

A = ixTM � IN + yIM � TN, �4�

with IN the N�N identity matrix and TN the N�N matrix,

TN =	
0 1 0 ¯ 0 0

− 1 0 1 ¯ 0 0

0 − 1 0 ¯ 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . − 1 0


 . �5�

Note that elements of A are labeled by ��m ,n� ; �m� ,n���,
where �m ,n� is a site index, and the element 1 in the first row
of A� is at position �1,n� of A, n=odd.

Expanding �3� along the first row and column, we obtain

Det A� = C„A;��1,n�;�1,n��… �6�

where C(A ; ��1,n� ; �1,n��) is the cofactor of the
��1,n� ; �1,n��th element of Det A.

The cofactor C�� ,�� of the �� ,��th element of any non-
singular A can be computed using the identity

C�A;�,�� = A−1��,��Det A , �7�

where A−1�� ,�� is the �� ,��th element of A. However, the
formula is not directly useful in the present case since the
matrix A is singular. We shall return to its evaluation in Sec.
IV.

III. EIGENVALUES OF THE DETERMINANT A

In this section we enumerate the eigenvalues of A.
The matrix TN is diagonalized by the similarity transfor-

mation

UN
−1TNUN = �N

where UN and UN
−1 are N�N matrices with elements

UN�n1,n2� =� 2

N + 1
in1 sin

n1n2�

n + 1
,

UN
−1�n1,n2� =� 2

N + 1
�− i�n2 sin

n1n2�

N + 1
, �8�

and �N is an N�N diagonal matrix whose diagonal elements
are the eigenvalues of TN,

�m = 2i cos
m�

N + 1
, m = 1,2, . . . ,N . �9�

Similarly the MN�MN matrix A is diagonalized by the
similarity transformation generated by UMN=UM � UN;
namely,

UMN
−1 AUMN = �MN, �10�

where �MN is a diagonal matrix with eigenvalues

�mn = 2i�ix cos
m�

M + 1
+ y cos

n�

N + 1
� ,

(a) (c)(b)

x

y

y

ix

y

1
0s ix

's

FIG. 1. �a� A dimer-monomer configuration on a 5�5 lattice L
with a single monomer at s0= �1,3�. �b� The extended lattice L�
with edge orientation and a phase factor i to horizontal edges. �c�
The reference dimer configuration C0.
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m = 1,2, . . . ,M, n = 1,2, . . . ,N , �11�

on the diagonal, and elements of UMN and UMN
−1 are

UMN�m1,n1;m2,n2� = UM�m1,m2�UN�n1,n2� ,

UMN
−1 �m1,n1;m2,n2� = UM

−1�m1,m2�UN
−1�n1,n2� .

Then we have

Det A = �
m=1

M

�
n=1

N

�mn. �12�

As in �2�, close-packed dimers on L are enumerated by
evaluating �Det A. For MN even, this procedure gives pre-
cisely the Kasteleyn solution �2�. For MN odd, the case we
are considering, the eigenvalue �mn=0 for m= �M +1� /2 ,n
= �N+1� /2, and hence Det A=0, indicating correctly that
there is no dimer covering of L. However, it is useful for
later purposes to consider the product of the nonzero eigen-
values of A,

P 
 �
m=1

M

�
n=1

N

��mn, �13�

where the prime over the product denotes the restriction
�m ,n�� (�M +1� /2 , �N+1� /2).

Using the identity

cos� m

M + 1
�� = − cos�M − m + 1

M + 1
�� ,

one can rearrange factors in the product to arrive at

P = Q �
m=1

�M−1�/2

�
n=1

�N−1�/2 �4x2 cos2 m�

M + 1
+ 4y2 cos2 n�

N + 1
�2

�14�

where the factor Q is the product of factors with either m
= �M +1� /2 or n= �N+1� /2. That is,

Q = � �
m=1

�M−1�/2

4x2 cos2 m�

M + 1
�� �

n=1

�N−1�/2

4y2 cos2 n�

N + 1
�

= � �M + 1��N + 1�
4

�xM−1yN−1, �15�

where we have made use of the identity

�
n=1

�N−1�/2 �4 cos2 n�

N + 1
� =

N + 1

2
, N odd.

The expression �14� for P will be used in the next section.

IV. EVALUATION OF THE COFACTOR

We now return to the evaluation of the cofactor
C(A ; ��1,n� ; �1,n��). We shall, however, evaluate the cofac-
tor C(A ; ��m ,n� ; �m� ,n���) for general m ,m� ,n ,n�, although
only the result of m=m�=1,n=n� is needed here.

To circumvent the problem of using �7� caused by the
vanishing of Det A=0, we replace A by the matrix

A��� = A + �IMN, � � 0,

whose inverse exists, and take the �→0 limit to rewrite �7�
as

C„A;��m,n�;�m�,n���… = lim
�→0

��A−1�����m�,n�;m,n�Det A���� .

�16�

Quantities on the right-hand side of �16� are now well de-
fined and the cofactor can be evaluated accordingly. Consid-
eration of the inverse of a singular matrix along this line is
known in mathematics literature as finding the pseudoinverse
�15,16�. The method of taking the small-� limit used here has
previously been used successfully in analyses of resistance
�17� and impedance �18� networks.

The eigenvalues of A��� are �mn���=�mn+� and hence we
have

Det A��� = �
m=1

M

�
n=1

N

��mn + �� = �P + O��2� , �17�

where P is the product of nonzero eigenvalues given by �14�.
We next evaluate A−1����m� ,n� ;m ,n� and retain only

terms of the order of 1 /�. Taking the inverse of �10� with
A��� in place of A, we obtain

A−1��� = UMN�MN
−1 ���UMN

−1 .

Writing out its matrix elements explicitly, we have

A−1����m�,n�;m,n� = �
m�=1

M

�
n�=1

N

�
UMN�m�,n�;m�,n��UMN

−1 �m�,n�;m,n�
�m�,n� + �

.

�18�

For � small the leading term comes from �m� ,n��
= (�M +1� /2 , �N+1� /2) for which �m�,n�=0. Using
UMN

−1 �m ,n ;m� ,n��=UM
−1�m ,m��UN

−1�n ,n�� and �8�, this leads
to the expression

A−1����m�,n�;m,n� = �1

�
�� 4im�+n��− i�m+n

�M + 1��N + 1�
�sin

m��

2

�sin
n��

2
sin

m�

2
sin

n�

2
+ O�1� .

Thus, after making use of �16� and �17� we obtain

C„A;��m,n�;�m�,n���… = sin
m�

2
sin

n�

2
sin

m��

2
sin

n��

2

��4im�+n��− i�m+nP

�M + 1��N + 1�
� . �19�
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Finally, specializing to m=m�=1, n=n� and combining
�2�, �6�, and �19�, we obtain

G�x,y� = �C„A;��1,n�;�1,n��…

= �� 4P

�M + 1��N + 1�
for n odd �A site� ,

0 for n even �B site� .
�

�20�

This gives the result �1� after introducing �14� for P. It also
says that there is no dimer covering if the monomer is on a B
site.

The expression �20� clarifies the underlining mathematical
content of the Tzeng-Wu solution �1� by identifying it as the
product of the nonzero eigenvalues of the Kasteleyn matrix.
This is compared to the Kasteleyn result �2� that for MN
even the dimer generating function is given by the product of
all eigenvalues.

V. DISCUSSIONS

We have used a direct approach to derive the closed-form
expression of the dimer-monomer generating function for the
rectangular lattice with a single monomer on the boundary.
Our approach is to first convert the problem into one of
close-packed dimers without monomers, and consider the
latter problem using established means. This approach sug-
gests a possible route toward analyzing the general dimer-
monomer problem.

We have also established that the Tzeng-Wu solution �1�
is given by the product of the nonzero eigenvalues of the
Kasteleyn matrix of the lattice. This is reminiscent of the
well-known result in algebraic graph theory �19� that span-
ning trees on a graph are enumerated by evaluating the prod-
uct of the nonzero eigenvalues of its tree matrix. The method
of evaluating cofactors of a singular matrix as indicated by
�16�, when applied to the tree matrix of spanning trees, de-
tails of which can be easily worked out, offers a simple and
direct proof of the fact that all cofactors of a tree matrix are
equal and equal to the product of its nonzero eigenvalues.
The intriguing similarity of the results suggests that there
might be something deeper lurking behind our analysis.

�1� E. H. Lieb and O. J. Heilmann, Phys. Rev. Lett. 24, 1412
�1970�.

�2� P. W. Kasteleyn, Physica �Amsterdam� 27, 1209 �1961�.
�3� H. N. V. Temperley and M. E. Fisher, Philos. Mag. 6, 1061

�1961�.
�4� M. E. Fisher, Phys. Rev. 124, 1664 �1961�.
�5� W. T. Lu and F. Y. Wu, Phys. Lett. A 259, 108 �1999�.
�6� G. Tesler, J. Comb. Theory, Ser. B 78, 198 �2000�.
�7� M. Jerrum, J. Stat. Phys. 48, 121 �1987�; 59, 1087 �1990�.
�8� H. N. V. Temperley, in Combinatorics: Proceedings of the

British Combinatorial Conference, London Mathematical So-
ciety Lecture Notes Series Vol. 13, �Cambridge University
Press, Cambridge, U.K., 1974�, p. 202.

�9� W.-J. Tzeng and F. Y. Wu, J. Stat. Phys. 10, 671 �2003�.

�10� Y. Kong, Phys. Rev. E 73, 016106 �2006�.
�11� Y. Kong, Phys. Rev. E 74, 011102 �2006�.
�12� Y. Kong �private communication�.
�13� T. T. Wu, J. Math. Phys. 3, 1265 �1962�.
�14� W. T. Lu and F. Y. Wu �unpublished�.
�15� A. Ben-Israel and T. N. E. Greville, Generalized Inverses:

Theory and Applications, 2nd ed. �Springer-Verlag, New York,
2003�.

�16� S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra,
4th ed. �Prentice-Hall, New York, 2002�, Sec. 6.7.

�17� F. Y. Wu, J. Phys. A 37, 6653 �2004�.
�18� W.-J. Tzeng and F. Y. Wu, J. Phys. A 39, 8579 �2006�.
�19� See, for example, N. L. Bigg, Algebraic Graph Theory, 2nd

ed. �Cambridge University Press, Cambridge, U.K., 1993�.

F. Y. WU PHYSICAL REVIEW E 74, 020104�R� �2006�

RAPID COMMUNICATIONS

020104-4


